

What is persistence?

Seeking for a practical interpretation for regulatory practice

¹Szegedi, K., ¹Gottesbüren, B.

¹ BASF SE, Crop Protection, APD/EF - LI444, 67117 Limburgerhof, Germany. E-mail: krisztian.szegedi@basf.com

1. Plant protection products → Regulation 1107/2009 applies

"An active substance, safener or synergist shall only be approved if it is not considered to be a persistent, bioaccumulative and toxic (PBT) substance. A substance that fulfils all three of the criteria of the points (persistence, bioaccumulation, toxicity) is a PBT substance," [1]

→ Hazard-based cut-off: no possibility for subsequent risk assessment

Persistence trigger	Soil DT50	Sediments DT50	Water DT 50		
РВТ	> 120 d	> 180 d (marine) > 120 d (freshwater)	> 60 d (marine) > 40 d (freshwater)		
vPvB	>180 d	> 180 d (marine) > 180 d (freshwater)	> 60 d (marine) > 60 d (freshwater)		
POP	> 6 months	> 2 months	> 2 months		

Table 1: Persistence criteria for POP, PBT and vPvB classification under the EU regulation 1107/2009. B and T criteria are not subjects of the current work

- Half-lives are compared to persistence triggers in each compartment individually
- Simple definition, but a substantial amount of existing data are not considered
- →Hazard-based cut-off might lead to unjustified P classifications

2. Critical point: persistence is not a substance property, only

In an environmental context, persistence is commonly understood as "residence time of a substance in a defined environmental compartment" (i.e. soil, sediment or water).

Persistence can not be directly measured

Persistence is not an intrinsic substance property

- Residence times of substances in environmental compartments are determined by
 - inherent substance properties and by
 - such soil microbial activity) and by
 - sometimes environmental factors (such as temperature) and by
 - transport processes.

3. Persistence triggers in the context of agricultural practice

Accumulation factor: ratio of concentration after long-term use and concentration after single application -> a practical indicator of persistence

Figure 1: Accumulation factor calculated for dfferent half-lives (C₀: initial concentration, C_{plateau}, concentration after long-term use). Colours indicate persistence triggers within the PBT an vPvB classifications, respectively.

→ Above defined persistence triggers have limited practical relevance

4. Overall persistence as a possible indicator of persistence

Overall persistence (Pov) is "a measure of the time scale of degradation of the chemical in the whole environment" [2]. Multimedia partitioning is consired for the calculation of Pov-

Figure 2: Environmental compartments and processess considered for the calculation of Pov (Modified after [2])

- Different software tools (e.g. ELPOS, OECD tool, etc) are available to calculate Pov
- Persistence trigger is defined using a set reference substances (P and not P)
- Similar models were implemented with differences in individual assumptions
- Results and their sensitivity to changes in input parameters can differ for each tool

5. Overall persistence (Pov) for a set of substances

Pov was calculated for a set of registered plant protection products with the EXCELbased tools ELPOS and the OECD tool. Calculated values were compared to indicator values based on reference substances

■ Most cases: respective P_{OV} calculated with the two different tools were comparable

In contrary to the OECD tool, ELPOS considers water and sediment separately. This leads to significantly different P_{OV} predicted by the two tools

→ Relevant parameters for Pov assessment must be identified Trigger for P: An extensive set of persistent reference substances is required

6. Summary

A reductionistic and rigid interpretation of persistence neglects a huge amount of data which is available on the partitioning and fate of substances in the environment.

Persistence has regulatory consequences - "Persistent" is not an adjective Persistence triggers must reflect all relevant information on a substance

- Overall persistence (Pov) appears to be an appropriate measure of persistence
- However...
 - by triggers, assessment methods and parameters must be consistent
 - Pov trigger must be derived using a set of persistent substances as reference
 - b input parameters must be derived for this specific purpose
 - typical emission pattern of plant protection products needs to be considered.

[1] Regulation (EC) No.1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC

- [2] Wegmann et al. (2009) Env. Mod. & Software 24. 228-237
- [3] Scheringer et al. (2009) IAEAM 5/4, 557-576 [4] Matthies et al.(2009) Environ, Sci. Technol. 43, 9223-9229
- [5] Klaismeier et al. (2006) ES&T 40, 53-60 [6] Boethling et al. (2009) IAEAM 5/4, 539-556

The authors thank for the valuable discussions with B. Jene and J. Hassink. *Default FOCUS value for exposure mod

upporting data:

Main parameters of the selected plant protection products

Substance	A	В	C	D	E	F	G	H	
DT _{50,soil} [d]	2	20	20	75	75	130	150	170	
DT _{50,air} [d]	0.3	0.1	0.1	0.5	1	1	0.3	0.4	
DT _{50,wat} [d]	35	10.3	6.8	1000*	59.8	32	1000*	13	
DT _{50,sed} [d]	1.36	4	80.5	15.1	61.4	1000*	1000*	17	
$DT_{50,wat/sed}[d]$	2	11	55	25	110	1000*	1000*	6	
log Kow	3.4	4	4.5	5.2	3.3	3	3.1	5.3	
log K _{AW}	-6.8	-8.7	-4	-2.9	-8.2	-7.7	-9.9	-2.4	